![]() Lubricant, solvent and emulsifier composition and method of manufacture
专利摘要:
A composition useful as a well lubricant, solvent and emulsifier that is preferably formed by the reaction and distillation of a tall oil fatty acid with a fatty alkanolamide, preferably in the presence of methyl ester of fatty acids, and most preferably when further reacted and distilled with an emulsifier such as coconut oil diethanolamide. The fatty acids and oils useful in the invention can range from C8 to C24, with C12, C14, C16, C18 and C20 fatty acids and oils being most preferred. The presence of methyl ester is preferred because it functions as a foam supressant, diluent and amine scavenger during distillation. 公开号:US20010006935A1 申请号:US09/773,864 申请日:2001-02-01 公开日:2001-07-05 发明作者:Larry Gatlin 申请人:Gatlin Larry W.; IPC主号:C10M159-12
专利说明:
[0001] 1. Field of the Invention [0001] [0002] This invention relates to compositions useful as lubricants for spotting fluids in well drilling operations with either oil-based or water-based muds. The compositions of the invention are non-toxic and biodegradable, are especially useful in fast hole drilling, and also function as performance extenders for corrosion inhibitors in high velocity gas, oil or water drilling, production or gathering applications. The invention also relates to a method for making the subject lubricant using a controlled mixing process and distillation under controlled conditions to remove more volatile components and promote esterification and further reaction with amine substituents. [0002] [0003] 2. Description of Related Art [0003] [0004] International Publication Number WO 97/12947, which claims priority based on U.S. Ser. No. 08/538,262, filed Oct. 3, 1995, discloses high flash point, low vapor pressure, cleaning compositions for oil and gas wells, said compositions containing about 40 to 99 weight percent of a fatty acid alkyl ester blend and about 1 to 25 weight percent of at least one lower alkyl glycol ether. The disclosed compositions, when injected into wells, are said to produce a coating on well casings, lines, pumps, pipes and other equipment, to prevent the adhesion and accumulation of paraffins, other related soils, and scale on these parts to help retard corrosion, and to allow more efficient operation and consistent production between cleanings. Preferred fatty acid alkyl ester blends for use in the invention are selected from the group consisting of C[0004] 1 to C8 esters of C4 to C22 fatty acids. Preferred lower alkyl glycol ethers are selected from the group consisting of ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl either, and mixtures thereof. The optional use of from 1 to 40 weight percent polyoxyalkylene glycol ethers is also disclosed. [0005] Various other prior art drilling fluid additives, spotting fluids and lubricant compositions are disclosed, for example, in U.S. Pat. Nos. 2,500,163; 3,108,068; 3,293,954; 3,396,105; 4,263,465; 4,282,392; 4,436,636; 4,464,269; 4,502,963; 4,525,285; 4,587,368; 4,652,385; 4,876,017; 5,421,907; and 5,547,925. [0005] [0006] A well lubricant composition is needed that has a low acid number, and is therefore much less likely to form calcium soaps from lime in downhole formations, which can in turn cause undesirable foaming in drilling muds. The desired composition should also be nontoxic and not susceptible to foaming during manufacture. [0006] SUMMARY OF THE INVENTION [0007] The composition of the invention is a well lubricant, solvent and emulsifier that is preferably formed by the sequential reaction and subsequent distillation of a tall oil fatty acid having a moderately low rosin content with a fatty alkanolamide, preferably in the presence of methyl ester of fatty acids, and most preferably when further reacted with an emulsifier such as coconut oil diethanolamide or an amide of aminoethylpiperazine (AEP) under distillation conditions facilitating the removal of water and lighter reaction byproducts . The fatty acids and oils useful in the invention can range from C[0007] 8 to C24, with C12, C14, C16, C18 and C20 fatty acids and oils being most preferred. The use of methyl ester is preferred because it functions as a foam supressant, diluent and amine scavenger during distillation. [0008] The composition of the invention has low viscosity compared to tall oil amides and imidazolines, predominantly remains in the oil phase, and is easily dilutable in pale oils, white oils, polyalpha or internal olefins, methyl esters or terpenes, d-limonenes, dipentenes, and the like. In aqueous solution the invention forms a dispersion that, when static or quiescent, evolves completely to oil, not leaving a residual material to sheen or cloud the water. The composition of the invention provides strong adhesion and oil wetting to metal parts, thereby reducing wear, increasing lubricity and improving fast hole drilling. [0008] [0009] The compositions of the invention, in their most preferred form, are believed to have the following general molecular structure: [0009] [0010] wherein R[0010] 1 is distilled tall oil or coconut oil; R2 is low rosin tall oil, vegetable oil or distilled tall oil; and R3 is vegetable oil, tall oil or distilled tall oil. [0011] A method is disclosed herein for producing the lubricant composition of the invention by combining and reacting the components within a controlled temperature range over a prolonged period and distilling off water and volatile reaction byproducts. The reaction and distillation can be done under pressures such as 45 to 120 psig using an autoclave or other pressure vessel in combination with a conventional overhead condenser system, or can be done at approximately atmospheric pressure (slight vacuum to 5 psig) using a conventional stirred reactor vessel that is vented to a condenser or to another chilled vessel that functions as a condenser. [0011] [0012] According to a preferred method of the invention, the preferred components are combined and mixed inside a stirred reactor vessel in fluid communication with a chilled condenser section. The temperature of the reactants is gradually raised to a temperature above 300° F., most preferably between about 320° and about 350° F., using heating means such as steam coils, and maintained at that temperature, usually for 6 to 8 hours or more, sometimes up to 12 hours, until the reaction is substantially complete. Distillation is desirably continued until the pressure of reaction reaches zero to facilitate the removal of distillable liquids, sweet perfume and clear liquids, followed by dark distillates of rearrangement. [0012] [0013] The reaction product is periodically sampled and the acid number is determined. Sampling is desirably continued on an hourly basis until the acid number is less than about 35, and most preferably, about 25 or lower. Samples are also desirably checked for AEW, which is preferably greater than 1000, and most preferably, ranges between about 2000 and about 5000 as the acid number drops to about 25. [0013] [0014] The preferred amides for use in the invention are most preferably made using diethanolamine (DEA), monoethanolamine (MEA), and other hydroxyethylamines that can undergo low temperature esterification and then interchange during the distillation. The oils can react by inter- or trans-esterification. During the process of the invention, the oils, fatty acids or methyl esters are believed to further react with free amine, the amine portion of fatty ester components, and also, the glycerin produced by decomposition of the oils (triglycerides). The subject process is believed to facilitate molecular rearrangement, lower the acid number, increase the amine equivalent weight (AEW), and remove substantially all soaps, water, methanol and low molecular acids and unreacted esters from the product, together with any other species that will steam distill. Removal of the steam-distillable materials eliminates their subsequent vaporization during use, for example, in hot drilling systems. [0014] DESCRIPTION OF THE PREFERRED EMBODIMENTS [0015] The products of the invention utilize fatty acids, preferably fatty acids contained in tall oil derived from pine trees, and most preferably, distilled tall oil containing from about 10 to 50% rosin acids. Secondly, the products depend on other vegetable oils or extracts, especially those obtained from coconut or coffee, but can also be made using oils or extracts from soya, safflower, canola, rapeseed, flax, cotton and the like. Distilled tall oil, low rosin tall oil and reclaimed cooking oil can also be used as the “vegetable oil” component in making the compositions of the invention. [0015] [0016] The mixing and prolonged heating of the reactants within a controlled temperature range and under distillation conditions, as described in greater detail below, is desired to allow molecules to develop as predicted. Although products formed simply by mixing the reactants may exhibit some of the utility of the product of the invention, rearrangement of the reaction products through inter- and trans-esterification during prolonged heating is believed to be necessary for achieving the full utility of the preferred product of the invention. [0016] [0017] The compositions of the invention, in their most preferred form, are believed to have the following general molecular structure: [0017] [0018] wherein R[0018] 1 is distilled tall oil or coconut oil; R2 is low rosin tall oil, vegetable oil or distilled tall oil; and R3 is vegetable oil, tall oil or distilled tall oil. These compositions are preferably made by combining under controlled reaction conditions as set forth herein components selected from each of the following four principal groups: methyl esters; tall oil fatty acids; esters produced from amides (amide/esters); and amides. [0019] Methyl esters suitable for use in the compositions of the invention include, for example, methyl esters of C[0019] 16-18 saturated and C18 unsaturated fatty acids, and methyl esters of tall oil fatty acids. [0020] Fatty acids suitable for use in the compositions of the invention include, for example, disproportionated tall oil fatty acids; distilled tall oil; disproportionated tall oil; resin acids and rosin acids; and rosin tall oil. [0020] [0021] Amide/esters that are suitable for use in the compositions of the invention include, for example, N,N-bis (hydroxyethyl) tall oil fatty amides; [0021] [0022] reaction products of rosin with diethanolamine; and reaction products of tall oil fatty acids with diethanolamine. [0022] [0023] Amides suitable for use in the compositions of the invention include, for example, N,N-bis (hydroxyethyl) saturated and unsaturated C[0023] 8-18 and C18 amides; reaction products of coconut oil with diethanolamine; and reaction products of these substituents with AEP and other polyethylene amine homologues. [0024] The combined weight of the fatty acid and amide/ester components preferably ranges from about 55 to about 90 weight percent of the total reactants, and the ratio of fatty acid to amide/ester desirably ranges from about 2:1 to about 3:2. According to a preferred embodiment of the invention, from about 5 to about 25 weight percent of methyl ester of fatty acids is also added to the initial reactants to scavenge for free amine radicals, suppress foaming, and function as a diluent. The amide component is believed to function as an emulsifier, and is desirably present in an amount ranging from about 5 to about 30 weight percent of the reactants. [0024] [0025] According to a particularly preferred method of the invention, the fatty acid and amide/ester components are combined and mixed in a stirred reactor vessel equipped with steam coils and vented to another chilled vessel that serves as a condenser during distillation. Using steam heat, such as heat provided from 135 pound steam, for example, the temperature of the reactants is gradually increased to about 180° F. At this point the total weight of the reactants is desirably determined, such as by weighing the reactor plus reactants and netting out the weight of the empty reactor. As the temperature of the reactants reaches about 212° F, water begins to distill off. As the temperature reaches about 280° F, the reaction rate increases substantially. The time required for the reactants to reach 280° will vary according to the particular types and amounts of reactants, amount of water in the reactants, heating rate, ambient conditions, and heat loss from the reactor, but times ranging from about 2 to about 6 hours are typical. [0025] [0026] The temperature is preferably further increased until the temperature is above 300° F, and most preferably between about 320° F. and 350° F, then controlled within that range with continuous distillation until the reaction substantially reaches completion. Completion of the reaction may take from six to eight hours, and sometimes up to 12 hours, from the time that the reactants reach a temperature of at least about 300° F. [0026] [0027] It is believed that during the reaction, some of the tall oil fatty acid is converted to methyl ester. It is also believed that the presence of methyl ester in the system reacts with unreacted secondary amines that may be present in the amide components, particularly where the amide is a reaction product of distilled tall oil with AEP. [0027] [0028] During distillation, the reaction mixture is vented to a condenser vessel or section, whereby distillable liquids, sweet perfume and clear liquids are removed, followed by dark distillates of rearrangement. Distillation is continued until the pressure of reaction reaches zero. The reaction product is sampled and the acid number is determined. Sampling is desirably continued on an hourly basis until the acid number is less than 35, and most preferably, about 25 or lower. Samples are also desirably checked for AEW, which is preferably greater than 1000, and most preferably, ranges between about 2000 and about 5000 as the acid number drops to about 25. It is observed that a weight loss of from about two to about four percent (when comparing weight of the reaction products remaining in the reactor to the weight of reactants at about 180° F.) is typical of the compositions of the invention when made as disclosed herein, and such weight loss is believed to further evidence of substantial completion of the reaction and the associated distillation desired to produce the products of the invention. [0028] [0029] The products of the invention will desirably have a pH ranging between 6 and 8, with a range of from about 6 to about 7.5 preferred. A pH in excess of about 8.3 may indicate the presence of free amine, which can be toxic. [0029] [0030] The method and composition of the invention are further described and explained in relation to the following examples: [0030] EXAMPLE 1 [0031] A preferred composition of the invention is made by combining about 40 weight percent tall oil fatty acid (CAS #61790-12-3) with about 26 weight percent fatty alkanolamide (CAS #68155-20-4), about 19 weight percent methyl ester (CAS #67762-38-3) and about 17 weight percent of a 50/50 mixture of coconut oil diethanolamide as an emulsifier inside a stirred, vented reactor, thereafter heating by steam to a temperature ranging between about 320 and 350 deg. F and maintaining such temperature for about six to eight hours, while venting distillates occurring at such temperatures to a condenser or other chilled reactor. The presence of methyl ester is believed to reduce foaming during distillation of the emulsifier. After the reaction pressure is reduced to zero, the composition remaining inside the reactor is sampled and its acid number determined. The AEW of the product is about 2400, and its pH (5% in 3:1 isopropyl alcohol to water) is about 6.9. The product has a specific gravity of about 0.93, a density of 7.78 lbs/gal, a free amine value of about 23.4, and an acid number of about 16.8, compared to an acid number of about 88 for the combined reactants. The product is clear and dark red or red amber in color. [0031] EXAMPLE 2 [0032] Another preferred composition of the invention is made by combining about 42 weight percent distilled tall oil (CAS #8002-264) with about 26 weight percent fatty alkanolamide (CAS #68155-20-4), about 19 weight percent methyl ester (CAS #74499-22-2), and about 18 weight percent of a corrosion inhibitor that is the reaction product of distilled tall oil with AEP (CAS #71820-35-4 and CAS #68910-93-0) inside a stirred, vented reactor, thereafter heating by steam to a temperature ranging between about 320 and 350 deg. F and maintaining such temperature for about six to eight hours, while venting distillates occurring at such temperatures to a condenser or other chilled reactor. The presence of methyl ester is believed to reduce foaming during distillation of the emulsifier. After the reaction pressure is reduced to zero, the composition remaining inside the reactor is sampled and its acid number determined. The AEW of the product is about 1657, and its pH (5% in 3:1 isopropyl alcohol to water) is about 6.82. The product has a specific gravity of about 0.98, a density of 8.15 lbs/gal, a free amine value of about 33.9, and an acid number of about 26. The product is viscous, clear and red brown in color. The composition, in its most preferred form, is believed to have the following general molecular structure: [0032] [0033] A composition is made the same as in Example 1 except that distilled tall is oil (CAS #8002-26-4) is substituted for the tall oil fatty acid. The properties of the resultant product are similar to those of the product of Example 1. [0033] [0034] Other alterations and modifications of the invention will likewise become apparent to those of ordinary skill in the art upon reading the present disclosure, and it is intended that the scope of the invention disclosed herein be limited only by the broadest interpretation of the appended claims to which the inventors are legally entitled. [0034]
权利要求:
Claims (43) [1" id="US-20010006935-A1-CLM-00001] 1. A composition formed by the reaction and removal of distillates from a mixture of a tall oil fatty acid having from 8 to 24 carbon atoms, an amide/ester, a methyl ester of fatty acid, and an emulsifier. [2" id="US-20010006935-A1-CLM-00002] 2. The composition of claim 1 wherein the tall oil fatty acid has from 12 to 20 carbon atoms. [3" id="US-20010006935-A1-CLM-00003] 3. The composition of claim 1 wherein the amide/ester is the reaction product of distilled tall oil and an alkanolamine. [4" id="US-20010006935-A1-CLM-00004] 4. The composition of claim 1 wherein the distilled tall oil contains from about 10 to about 50 weight percent rosin acids. [5" id="US-20010006935-A1-CLM-00005] 5. The composition of claim 3 wherein the alkanolamine is selected from the group consisting of diethanolamine and monoethanolamine [6" id="US-20010006935-A1-CLM-00006] 6. The composition of claim 1 wherein the methyl ester is derived from tall oil fatty acids. [7" id="US-20010006935-A1-CLM-00007] 7. The composition of claim 1 wherein the methyl ester is derived from saturated fatty acids having from 16 to 18 carbon atoms. [8" id="US-20010006935-A1-CLM-00008] 8. The composition of claim 1 wherein the emulsifier is selected from the group consisting of the reaction product of vegetable oil and an alkanolamine, the reaction product of vegetable oil with a polyethylene amine, the reaction product of distilled tall oil with AEP, and the reaction product of distilled tall oil with a polyethylene amine. [9" id="US-20010006935-A1-CLM-00009] 9. The composition of claim 8 wherein the emulsifier is coconut oil diethanolamide. [10" id="US-20010006935-A1-CLM-00010] 10. A well lubricant comprising the composition of claim 9 . [11" id="US-20010006935-A1-CLM-00011] 11. The composition of claim 1 when diluted in a liquid selected from the group consisting of pale oil, white oil, polyalpha olefin, internal olefin, methyl ester, terpene, d-limonene and dipentene. [12" id="US-20010006935-A1-CLM-00012] 12. The composition of claim 2 wherein the tall oil fatty acid contains about 2 weight percent rosin. [13" id="US-20010006935-A1-CLM-00013] 13. The composition of claim 2 having an acid number less than 35. [14" id="US-20010006935-A1-CLM-00014] 14. The composition of claim 13 having an acid number less than 25. [15" id="US-20010006935-A1-CLM-00015] 15. A well lubricant composition comprising from about 45 to about 90 weight percent of the reaction product of tall oil fatty acid and a fatty alkanolamide, when reacted in the presence of from about 5 to about 25 weight percent methyl ester of fatty acids, then further reacted and distilled in the presence of from about 5 to about 30 weight percent of the reaction product of a fatty oil with an alkanolamine. [16" id="US-20010006935-A1-CLM-00016] 16. The composition of claim 15 wherein the tall oil fatty acid comprises about 2 weight percent rosin. [17" id="US-20010006935-A1-CLM-00017] 17. The composition of claim 15 wherein distilled tall oil is substituted for the tall oil fatty acid. [18" id="US-20010006935-A1-CLM-00018] 18. The composition of claim 15 wherein the ratio of tall oil fatty acid to fatty alkanolamide is about 8:5. [19" id="US-20010006935-A1-CLM-00019] 19. The composition of claim 15 wherein the fatty alkanolamide is the reaction product of distilled tall oil and diethanolamine. [20" id="US-20010006935-A1-CLM-00020] 20. The composition of claim 19 wherein the distilled tall oil and diethanolamine are reacted in a ratio of about 3:1 by weight. [21" id="US-20010006935-A1-CLM-00021] 21. The composition of claim 15 wherein the fatty oil is obtained from the group of vegetable products consisting of coconut, coffee, soya, safflower, canola, rapeseed, flax, cotton, distilled tall oil, low rosin tall oil, and reclaimed cooking oil. [22" id="US-20010006935-A1-CLM-00022] 22. The composition of claim 21 wherein the fatty oil is coconut oil and the alkanolamine is diethanolamine. [23" id="US-20010006935-A1-CLM-00023] 23. The composition of claim 15 wherein the methyl ester is methyl ester of fatty acids having from 16 to 18 carbon atoms. [24" id="US-20010006935-A1-CLM-00024] 24. A composition having the following structural formula: [25" id="US-20010006935-A1-CLM-00025] 25. The composition of claim 1 wherein the vegetable oil is made from plants selected from the group consisting of coconut, coffee, soya, safflower, canola, rapeseed, flax, cotton, and reclaimed cooking oil. [26" id="US-20010006935-A1-CLM-00026] 26. The composition of claim 1 wherein the vegetable extract is made from plants selected from the group consisting of coconut, coffee, soya, safflower, canola, rapeseed, flax, and cotton. [27" id="US-20010006935-A1-CLM-00027] 27. A well lubricant composition comprising from about 60 to about 90 weight percent of the reaction product of distilled tall oil and a fatty alkanolamide, which is further reacted and distilled in the presence of from about 10 to about 20 weight percent of the reaction product of distilled tall oil and AEP. [28" id="US-20010006935-A1-CLM-00028] 28. The composition of claim 27 wherein the reaction product is produced in the presence of up to about 20 weight percent methyl ester of fatty acids having from 16 to 18 carbon atoms. [29" id="US-20010006935-A1-CLM-00029] 29. The composition of claim 27 wherein the fatty alkanolamide is the reaction product of distilled tall oil and diethanolamine. [30" id="US-20010006935-A1-CLM-00030] 30. The composition of claim 27 comprising from about 30 to about 60 weight percent distilled tall oil. [31" id="US-20010006935-A1-CLM-00031] 31. The composition of claim 27 comprising from about 30 to about 60 weight percent fatty alkanolamide. [32" id="US-20010006935-A1-CLM-00032] 32. The composition of claim 27 wherein the ratio of distilled tall oil to fatty alkanolamide ranges from about 3:1 to about 3:2 by weight. [33" id="US-20010006935-A1-CLM-00033] 33. The composition of claim 27 wherein the distilled tall oil contains about 25 weight percent rosin. [34" id="US-20010006935-A1-CLM-00034] 34. The composition of claim 33 wherein the methyl ester contains about 25 weight percent rosin. [35" id="US-20010006935-A1-CLM-00035] 35. A method for making a lubricant composition comprising the steps of: combining and mixing inside a stirred reactor vessel in fluid communication with a condenser from about 55 to about 90 weight percent of a mixture of fatty acids and amide/ester wherein the ratio of fatty acid to amide/ester ranges from about 2:1 to about 3:2, from about 5 to about 30 weight percent of an emulsifier and up to about 25 weight percent of a methyl ester of fatty acid; gradually increasing the temperature of the reactants above 3000 F. while stirring; maintaining the temperature of the reactants at a reaction temperature above about 300° F. with stirring for a period of from about 6 to about 12 hours while removing distillate from the reactants; and thereafter recovering the undistilled reaction product remaining inside the reactor. [36" id="US-20010006935-A1-CLM-00036] 36. The method of claim 35 wherein the reaction temperature ranges from about 320° F. to about 350° F. [37" id="US-20010006935-A1-CLM-00037] 37. The method of claim 35 wherein the reaction temperature is maintained for a period of from about 6 to about 8 hours. [38" id="US-20010006935-A1-CLM-00038] 38. The method of claim 35 wherein the weight of the reaction product is from two to four weight percent lower than the weight of the reactants. [39" id="US-20010006935-A1-CLM-00039] 39. The method of claim 35 wherein the acid number of the reaction product is lower than 35. [40" id="US-20010006935-A1-CLM-00040] 40. The method of claim 39 wherein the acid number is lower than 25. [41" id="US-20010006935-A1-CLM-00041] 41. The method of claim 35 wherein the pH of the reaction product ranges from about 6 to about 8. [42" id="US-20010006935-A1-CLM-00042] 42. The method of claim 41 wherein the pH of the reaction product ranges from about 6 to about 7.5. [43" id="US-20010006935-A1-CLM-00043] 43. The method of claim 35 wherein the AEW of the reaction product is at least 1000.
类似技术:
公开号 | 公开日 | 专利标题 US6194361B1|2001-02-27|Lubricant composition US20140005079A1|2014-01-02|Environmentally Friendly Solvent Systems/Surfactant Systems For Drilling Fluids US4419105A|1983-12-06|Maleic anhydride-amine reaction product corrosion inhibitor for alcohols US4348210A|1982-09-07|Novel process and product CA2568764A1|2007-06-07|Asphaltene dispersants for petroleum products EP0620760A1|1994-10-26|Liquid sorbent. US6368422B1|2002-04-09|Process for removing solid asphalt residues produced in the petroleum industry US5567213A|1996-10-22|Use of olefinic imines to scavenge sulfur species US20210087334A1|2021-03-25|Preparation ofAlkylcyclohexanol Polyoxyethylene Ether Emulsifier and Application Thereof CA2386721A1|2001-04-19|Asphaltene inhibitors EP1897908B1|2009-01-07|Antifoulant dispersant composition and method of use RU2110613C1|1998-05-10|Corrosion protection means US5055231A|1991-10-08|Reaction products of boric acid and alkanoletheramines and their use as corrosion inhibitors CN102031529B|2016-05-18|For the manufacture of the anticorrosive additive of process, Its Preparation Method And Use US4851142A|1989-07-25|Fluid loss additive for well drilling fluids US20130046048A1|2013-02-21|Use of a BTEX-Free Solvent to Prepare Stimulation and Oilfield Production Additives US4511368A|1985-04-16|Corrosion inhibitors for alcohol-based fuels US4668733A|1987-05-26|Pour point depressants comprising polyolefins modified with side chains US8507424B2|2013-08-13|Process for producing oligomers RU2288943C1|2006-12-10|Multifunctional addition agent for automobile gasoline WO1991015455A1|1991-10-17|Esters and fluids containing them EP0165776B1|1990-04-25|Corrosion inhibitors for alcohol-based fuels US5530137A|1996-06-25|Methods and compositions for stabilizing fatty acid imidazoline solutions US6544489B2|2003-04-08|Defoaming compositions for high acid strength media RU2083627C1|1997-07-10|Inhibitor of asphaltene-tar-paraffin and paraffin-hydrate deposits
同族专利:
公开号 | 公开日 US6194361B1|2001-02-27| US6489272B2|2002-12-03|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 CN101735778A|2009-12-03|2010-06-16|中国海洋石油总公司|Highly-efficient lubricant for drilling fluid| US9914867B2|2016-02-16|2018-03-13|Noles Intellectual Properties, Llc|Completion fluid friction reducer|US2500163A|1948-10-29|1950-03-14|Socony Vacuum Oil Co Inc|Synthetic lubricants| US3108068A|1960-12-05|1963-10-22|Texaco Inc|Water-in-oil emulsion drilling fluid| US3179615A|1961-10-24|1965-04-20|Frank C Magne|Diesteramide plasticizers| US3361771A|1961-10-24|1968-01-02|Agriculture Usa|Diesteramide plasticizers| US3396105A|1963-08-19|1968-08-06|Mobil Oil Corp|Drilling fluid treatment| US3298954A|1964-03-27|1967-01-17|Standard Oil Co|Metal working lubricant| US3515754A|1964-08-26|1970-06-02|Us Agriculture|N,n-disubstituted amides| US4282392A|1976-10-28|1981-08-04|Gulf Research & Development Company|Alpha-olefin oligomer synthetic lubricant| US4263465A|1979-09-10|1981-04-21|Atlantic Richfield Company|Synthetic lubricant| US4464269A|1981-07-29|1984-08-07|Exxon Research & Engineering Co.|Additive composition for release of stuck drill pipe| US4436636A|1981-12-21|1984-03-13|Nl Industries, Inc.|Invert emulsion well servicing fluids| GB2129467B|1982-11-03|1986-07-02|Halliburton Co|The use of certain materials as thinners in oil based drilling fluids| US4525285A|1983-08-31|1985-06-25|Halliburton Company|Method of preventing loss of an oil-base drilling fluid during the drilling of an oil or gas well into a subterranean formation| US4587368A|1983-12-27|1986-05-06|Burmah-Castrol, Inc.|Process for producing lubricant material| CA1248516A|1985-07-15|1989-01-10|Stephen C. Cohen|Lubricating oil compositions containing novelcombination of stabilizers| US4876017A|1988-01-19|1989-10-24|Trahan David O|Use of polyalphalolefin in downhole drilling| DE4116580A1|1991-05-21|1992-11-26|Henkel Kgaa|USE OF FAT-ACID 2-ETHYLHEXYL ESTERS AS A COLD CLEANING AGENT| US5547925A|1992-09-25|1996-08-20|Integrity Industries, Inc.|Low toxicity terpene drilling fluid and drilling fluid additive| US5622911A|1994-02-14|1997-04-22|Kao Corporation|Method for enhancing the efficacy of agricultural chemical with alkoxylated fatty acid amides| CO4560488A1|1995-10-03|1998-02-10|Nor Ind Inc|CLEANING COMPOSITIONS FOR LINE WELLS, HOUSINGS, TRAININGS AND OIL AND GAS EQUIPMENT.|FI111380B|2001-06-08|2003-07-15|Forchem Oy|Process for the preparation of fuel additive and an additive| US6620772B2|2001-07-13|2003-09-16|Renewable Lubricants, Inc.|Biodegradable penetrating lubricant| US6624124B2|2001-07-13|2003-09-23|Renewable Lubricants, Inc.|Biodegradable penetrating lubricant| WO2003031534A1|2001-10-11|2003-04-17|Clearwater International, L.L.C.|Invert emulsion drilling fluid and process| US6717094B2|2002-07-22|2004-04-06|Edward L. Beaumont|Electrical discharge machine and methods of establishing zero set conditions for operation thereof| US6909064B2|2003-04-07|2005-06-21|Progressive Tool & Industries Co.|Pinch weld gun with swivel shunt connection| US7332458B2|2003-04-08|2008-02-19|Q'max Solutions Inc.|Drilling fluid| US20040241309A1|2003-05-30|2004-12-02|Renewable Lubricants.|Food-grade-lubricant| US20060211585A1|2003-09-12|2006-09-21|Renewable Lubricants, Inc.|Vegetable oil lubricant comprising Fischer Tropsch synthetic oils| EP1711586A4|2003-09-12|2008-08-20|Renewable Lubricants Inc|Vegetable oil lubricant comprising all-hydroprocessed synthetic oils| US7191834B2|2004-09-22|2007-03-20|Halliburton Energy Services, Inc.|Foamed cement compositions and associated methods of use| US20060076145A1|2004-10-13|2006-04-13|Weatherford/Lamb, Inc.|Gas lift using a gas/oil mixer| CN101218331B|2005-04-26|2013-04-24|可再生润滑油有限公司|High temperature biobased lubricant compositions comprising boron nitride| US20070287636A1|2006-06-09|2007-12-13|Sun Drilling Products Corporation|Drilling fluid additive and base fluid compositions of matter containing B100 biodiesels; and applications of such compositions of matter in well drilling, completion, and workover operations| US20090209922A1|2008-02-15|2009-08-20|Nypro Inc.|Self-Lubricating Elastomeric Components for Use in Medical Devices| US9107737B2|2011-11-21|2015-08-18|Alan Schwartz|Goggles with facial conforming eyepieces| CN103013636B|2012-12-31|2014-07-09|中国地质大学(北京)|Green mining support oil and preparation method thereof| US10251770B2|2014-01-03|2019-04-09|Hollister Incorporated|Lubricated valve for ostomy pouch| US10844264B2|2015-06-30|2020-11-24|Exxonmobil Chemical Patents Inc.|Lubricant compositions comprising diol functional groups and methods of making and using same| US20170002251A1|2015-06-30|2017-01-05|Exxonmobil Chemical Patents Inc.|Glycerol Carbamate Based Lubricant Compositions and Methods of Making and Using Same| WO2017003635A1|2015-06-30|2017-01-05|Exxonmobil Chemical Patents Inc.|Lubricant compositions and methods of making and using same| US9809680B2|2015-11-12|2017-11-07|International Business Machines Corporation|Amine scavengers for synthesis of polythioaminals| CN105950124B|2016-05-09|2018-08-10|中国石油天然气集团公司|A kind of diluent of oil base drilling fluid and its preparation method and application| FR3060605B1|2016-12-15|2021-05-28|Skf Ab|GREASE COMPOSITIONS AND THEIR MANUFACTURING PROCESS|
法律状态:
2002-11-14| STCF| Information on status: patent grant|Free format text: PATENTED CASE | 2003-05-20| CC| Certificate of correction| 2005-03-31| AS| Assignment|Owner name: CLEARWATER INTERNATIONAL, L.L.C., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GATLIN, LARRY W.;REEL/FRAME:015841/0645 Effective date: 20050330 | 2006-06-21| REMI| Maintenance fee reminder mailed| 2006-06-30| FPAY| Fee payment|Year of fee payment: 4 | 2006-06-30| SULP| Surcharge for late payment| 2010-05-07| FPAY| Fee payment|Year of fee payment: 8 | 2014-05-07| FPAY| Fee payment|Year of fee payment: 12 | 2015-10-09| AS| Assignment|Owner name: LUBRIZOL OILFIELD SOLUTIONS, INC., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CLEARWATER INTERNATIONAL, L.L.C.;REEL/FRAME:036822/0379 Effective date: 20150804 | 2018-01-18| AS| Assignment|Owner name: THE LUBRIZOL CORPORATION, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUBRIZOL OILFIELD SOLUTIONS, INC.;REEL/FRAME:044655/0922 Effective date: 20171211 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US09/079,023|US6194361B1|1998-05-14|1998-05-14|Lubricant composition| US09/773,864|US6489272B2|1998-05-14|2001-02-01|Lubricant, solvent and emulsifier composition and method of manufacture|US09/773,864| US6489272B2|1998-05-14|2001-02-01|Lubricant, solvent and emulsifier composition and method of manufacture| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|